Blog post

How to Apply AI for Predictive Fleet Management Maintenance Software

Get a technology-oriented view on predictive fleet management maintenance software powered by AI, IoT, and cloud computing

June 15, 2020

8 mins read

Fleet management companies have many expenses, but even seemingly insignificant maintenance issues can start a costly domino effect if not addressed properly and in time. Sometimes, timely detection of an upstream problem such as a turbo failure can prevent more expensive downstream issues, such as an aftertreatment failure.

Waiting a week or two for the next scheduled maintenance kills precious time. Real-time monitoring and data-driven prediction software for fleet maintenance can warn a fleet manager about an entire chain of troubles even a minor problem can cause.

The cost of trucking
How to Apply AI for Predictive Fleet Management Maintenance Software
The difference between preventive and predictive maintenance all comes down to the technologies behind fleet management maintenance software. Artificial intelligence (AI) and Internet of Things (IoT) technologies can save fleet companies a fortune on vehicle repairs.

In this article, you’ll find:

  • The difference between preventive and predictive software for fleet maintenance
  • Advanced technologies to use for fleet predictive maintenance
  • Key benefits of predictive fleet management maintenance software
  • Advice to fleet companies on implementing predictive fleet maintenance

What is the difference between preventive and predictive software for fleet maintenance?

Fleet managers have a long journey from using preventive maintenance truck programs that identify existing problems to using fleet predictive maintenance software that can detect issues before they manifest. Telematics data, artificial intelligence, and cloud technologies play a growing role in the development of predictive fleet vehicle maintenance software.

The most illustrative difference between a fleet preventive maintenance program and predictive maintenance is a shift from assumptions and strict scheduling to data-driven decisions and real-time equipment monitoring. The old-fashioned approach was based on taking a vehicle out of rotation every 3,000 to 4,000 miles or every 10,000 to 12,000 hours for prescheduled and regular maintenance. On the contrary, predictive fleet vehicle maintenance software can collect measurements on separate parts of a vehicle that influence maintenance — like oil and tire pressure — to schedule service of equipment only when conditions reach a threshold and most likely will cause problems.

Software for fleet maintenance can build predictions based on direct measurements of equipment as well as contextual data like weather conditions, traffic, road quality, and a driver’s behavior. Machine learning models can be trained on collected data to detect specific failure scenarios, taking into account the condition of separate vehicle parts and the conditions of vehicle exploitation.

Time is the most valuable asset when it comes to detecting potential issues with fleets. It’s pointless to detect a problem minutes before it causes a road incident or cargo damage. More time is needed to act in order to minimize costs and hazards. This is why predicting equipment issues and planning relevant maintenance becomes so important for fleet management businesses. And predictive software for fleet maintenance can provide alerts on potential issues several days to months in advance.
How to Apply AI for Predictive Fleet Management Maintenance Software
A smart alert system integrated within fleet maintenance software can accelerate fleet managers’ and drivers’ reactions in the field. It can also send alerts to make fast decisions on taking a truck off the road, visiting a nearby repair shop, or finishing the route and addressing the issue upon the vehicle’s return.

Fleet Management Software Development Services

Apply advanced IoT and AI technologies to telematics data for increased efficiency, insight-driven decisions, and transparent control over vehicle fleets

Learn more
Fleet-management_light-01

What advanced technologies are behind predictive fleet maintenance?

Artificial intelligence plays a critical role in building predictions based on collected telematics data. To process data analytics and deliver fast alerts, predictive fleet vehicle maintenance software should rely on cloud computing power and a flexible microservices architecture to integrate additional services for contextual data on things like weather and traffic. Finally, service and fleet managers should receive easy-to-use reports and have all the tools at hand to plan relevant equipment maintenance.
How to Apply AI for Predictive Fleet Management Maintenance Software

Telematics data collection

By turning to telematics data, fleet companies can shift from reactive to preventive measures. Doing so helps them address small problems before they become big. Connected IoT sensors can provide real-time data on vehicle parts and send Diagnostic Trouble Codes (DTCs) to track mechanical failures in real time while fleet management software uses this data for analytics and predictive maintenance planning.

A practical case study on how to apply telematics to fleet maintenance for tracking and analyzing DTCs collected from vehicles in the field

Flexible cloud architecture

Taking into account the amount of data from the many sensors and vehicles, fleet management maintenance software requires a flexible architecture that allows for easy integration of third-party services for additional contextual data. Cloud computing power allows for processing big data sets and provides access to critical data from everywhere while allowing businesses to shift to customer-oriented SaaS business models.

Example of a predictive fleet maintenance solution built on Google Cloud PlatformHow to Apply AI for Predictive Fleet Management Maintenance Software

AI and machine learning algorithms

Service managers and fleet companies can use telematics data beyond DTC information to ensure smart analytics of all historical and collected data points on separate vehicle parts. Diving deeper into the data using machine learning algorithms, fleet companies can detect early warning signs of potential equipment failure.

Simply gathering all the data coming from sensors is not enough. Making effective machine learning predictions for fleet maintenance requires you to follow a certain flow:

  • Set up health conditions for each vehicle part based on historical data to train the machine learning model to recognize abnormalities.
  • Ensure an uninterrupted flow of recent data to the machine learning engine to monitor equipment health in real time and train the model to detect deviations.
  • Integrate the machine learning engine with notification systems to alert service managers of warning signs so they can plan maintenance or immediately take a vehicle off the road.

For electric trucks, for example, predictive maintenance software can regularly check the battery status, transfer data to the cloud, apply AI models to predict how a vehicle will consume energy under the current conditions, and notify the driver to avoid issues like a dead battery as well as to plan maintenance when the battery’s capacity goes lower than what’s specified by the OEM.

User-friendly and comprehensive dashboards

When running AI data analytics for failure prediction, software for fleet maintenance should provide a visual representation of data in a consumable form. The best way to do this is to offer dashboards with customizable functionality so fleet managers can choose what data is the most critical to show. Cross-platform accessibility ensures fleet managers are always connected and can react to potential issues, monitoring fleets from mobile devices.

Learn about UI/UX design services for a fleet management solution that visualizes data on custom dashboards

Key benefits of predictive fleet management maintenance software

Apart from business-critical benefits such as reduced costs on fleet repairs, a fleet predictive maintenance program can deliver value for companies by optimizing vehicle utilization and even improving driver satisfaction. Predictive maintenance solutions allow fleet managers to automate some routine tasks and share responsibilities with regular operators who respond to alerts, while managers can focus on other work. Automation offered by fleet software saves time on tracking issues, eliminates the risk of human error, and minimizes meaningless but costly servicing before it’s really needed since maintenance is based on actual utilization and measurements instead of time intervals and assumptions.

Reduced downtime and increased vehicle availability

The first way predictive maintenance helps fleets is by reducing vehicle downtime due to avoidable repairs. In addition, vehicles can be utilized more efficiently because maintenance is planned only when it’s required. When planned based on random dates or mileage, vehicle maintenance steals time by making equipment unavailable for use. With predictive maintenance, fleet managers can schedule maintenance based on accurate diagnostics and vehicle usage information. As vehicles with less use do not require as many maintenance stops, the availability of assets increases while losses due to unnecessary maintenance are minimized.

Increased efficiency of fleets and drivers

Advanced technologies applied to fleet maintenance can improve the entire repair network. Continuously monitoring each vehicle results in individual vehicle profiles, which makes it easier for technicians to perform repairs and take preventive measures to avoid related issues. As a result, fleets avoid losing their equipment for extended periods to detect all malfunctions while drivers avoid incidents on the road.

Fuel economy and smart resource planning

Fuel is the second biggest expense in the trucking business. And proper maintenance can save fuel. For example, by monitoring the pressure of the inlet and outlet can increase air throughput of the filters and their cleanness. An AI system can detect differences in pressure because of regen, which happens more often when the filter is clogged as ash and soot are not burning with fuel. In such a way, the system can show when a diesel filter should be replaced even before the monitoring system sends a DTC.

Advice to fleet companies on the way to predictive fleet maintenance

All the data collected from connected fleets can be overwhelming for fleet managers.

There are 17,000 fault codes that can be broadcast over the J1939 connector and each one could indicate up to 25 different failure modes. AI stitches together all the data points from disparate sources to create actionable insights.

Braden Pastalaniec, Head of Fleet AI at Uptake

As you can see, AI can take the burden of data analytics and data-driven insights to improve fleet efficiency, simplify processes for fleet workers, and save businesses from burning huge sums on repairs. Here’s some advice on how fleets can evolve from reactive maintenance to to predictive.

  • Reverse the legacy culture – Instead of repairing a truck when it breaks, fix a potentially weak link in advance.
  • Invest in proven tools or develop your own – Connected sensors installed on vehicle hardware are good, but integration with software tools is better.
  • Don’t miss any data – Collect data on equipment and its context to cover the entire lifecycle of a vehicle that impacts its maintenance.
  • Monitor, measure, act – Establishing thresholds of use for each asset and monitoring how close a vehicle gets to those thresholds makes outcomes more predictable and enables timely actions.

Applying advanced technologies to fleet maintenance to predict potential issues is a bold task to undertake on your own. Partnering with a software development vendor with expertise in fleet management solutions will help you save time and money on the development and rollout of your product.


Contact Intellias to rapidly apply recent technologies to your fleet management solution.

Your subscription is confirmed.
Thank you for being with us.

5.0 Thank you for your vote. 25351 538b447f64

Tell us about your project

I give consent to the processing of my personal data given in the contact form above under the terms and conditions of Intellias Privacy Policy. I want to receive commercial communications and marketing information from Intellias by electronic means of communication (including telephone and e-mail).
* I give consent to the processing of my personal data given in the contact form above under the terms and conditions of Intellias Privacy Policy.

Awards and recognition

logo
logo
logo
logo
logo
logo

Thank you for your message.
We will get back to you shortly.

Thank you for your message.
We will get back to you shortly.